s ¢ Ubertlall
; Qﬁ’i{ BxDC6265 /72 x5 /616Ca6C

Syscall Proxying fun
and applications

csk 'at' uberwall 'dot’ org

Uberidall

BxDCE26572 BxS57616C6C

SPEAKER

= csk from uberwall security

- Securitly auditor and researcher for
Dreamlab Technologies AG

- SpeC|aI|zed In telco auditing but
sometimes..

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of syscall and OS cases

= Introduction to syscall proxying techniques

= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib

= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= Introduction to syscall proxying techniques
= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib

= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Introduction

2002 — Maximiliano Caceres (CORE SDI)
Providing a direct interface into a target OS
Used in automated pentest tools

Used as “super” IPCin QNX

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Definition

= Definition of a syscall

— Kernel trap calls used by userland programs
to access wonderland (kernel) functions

= OS cases

— All unices use syscalls

— Win32 or I0OS use non transparent syscalls.
Syscall proxying is still possible but not in the
same way, more like shellcodes for win32

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= Introduction to syscall proxying techniques
= Using syscall proxying in different applications

= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib

= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Basics

Preparing locally your code
Executing remotely syscalls
Getting the result back
Interpretation

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Interests

= Memory resident
= Real remote kernel interface
= Everything is possible!

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Uninteresting

= The only syscall which we can't deal with : fork()

= Can't be used as is with non syscall transparent
OS like win32 plateforms or Cisco I0S

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases
= |ntroduction to syscall proxying techniques

= Using s%/_scall proxying in different
applications

= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib
= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Applications

= Legitimate syscall proxy servers

Remote patching for minor upgrades
Remote debuggln?

Transparent remote IPC

Etc... be creative

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Applications

= |legitimate syscall proxy servers

Evolved exploits _
Evolved backdoors & rootkits
Attack frameworks use syscall proxy agents

worms

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= Introduction to syscall proxying techniques

= Using syscall proxying in different applications
= Case of exploit writing —shellcodes
= Writing tools locally for remote fun — Uwsplib
= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying - Exploits

= Why it can be useful for exploit writers

Multi-stage exploits _

Exploit scalability / modularity

anlg}dge escalation, exploitation at the same
ime

f_ttacflging, covering, backdooring at the same
ime

Used as transparent hop(e) station during the
attack / discovery process

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying Shellcode principles

= Locally preparing stack

= Packing and sending it to shellcode

= Remote execution

= The shellcode sends the resultant stack

= Local interpretation

= Loop

= Syscall proxy shellcodes are universal!

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= Introduction to syscall proxying techniques

= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

. Writin%tools locally for remote fun —
Uwspli

= Playing further - UWinitfucker
= Future & Conclusion
= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Locals tools for remote fun - UWsplib

= What was needed to make the work easier ?

= Shellcodes
= Writing tools locally to be used remotely
= Easy to use API for' these tools

= What we did

= UWsplib: ultra light libc for syscall proxy
usage

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun - UWsplib

= |nitialization
= sp_init(linux_x86);

= Get stack base addr and IDT
= Using normal standard functions

Sp_open
S ead()
sp_exit()

S trace
Richiracel

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Locals tools for remote fun - shell

= Accessing a shell like an interpreter without
using the target ones (monitored etc... ?)

= Implimenting s‘pecial_functions like importing
and exporting files directly

= Always with the same things in mind: least
possible resident code on the owned host

= Test code: UW_sp_minishell2

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Remote network applications

. Writin? all your network tools to be
executed remotely by the owned host

= Make attacks difficult to trace

= Using the trusted host relationship to
access protected areas (hop stations)

= Test code: UW_sp_simplescan

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Localstools for remote fun
Remote process infection

= Exploiting a vulnerability to:
= Remotely injecting a parasite into a process
= Remotely backdooring a process

= Can be useful for:

= Worm writing _
= Stealth backdoors like a patched sshd process

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Remote process infection

= 1sttechnique: .text infection

= Injecting code into .text section
= Hijacking GOT to redirect read_g) for
eXxample to execute our parasite and
return the real read() _ .
= Work only with dynamically linked binary

= Don't change the size of the process in
memory

= You are limited by the .text size
= Test code: UW _sp _injectprocess

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Remote process infection

- 2”ddtechnique: two stage injection with mmap
code

= Inject mmap shellcode into process

= Execute it and return created memory zone
- wect parasite into this zone

= Wake up the code with signal()/alarm() code
Work with statically linked binary (init ?)

Modify process size in memory
You are not limited by the parasite size
Test code: UW_sp_mmapinject

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
I'm just too lazy sometimes

= Rewriting all my tools... NO WAY... I'm lazy

How can | use my old tools: LDPRELOAD

Just a syscall wrapper to use with “normal” tools
Still in development but already usable

Test code: UWskyzoexec

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= [ntroduction to syscall proxying techniques

= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Remote Kernel patching

= Exploiting a vulnerability
= Priviledge escalation if needed

= Patching the kernel remotely using well
known IDT tricks and others for on the fl){1
kernel patching througth /dev/ikmem wit
sp_Iseek(), sp _read(), sp_write() functions.

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - concept

Using a vulnerability to directly rootkit the
remote host during the exploitation process

Modularity because all the code is on the client
side e.g the attacker host

Least code possible on the owned side
= For antiforensic purposes
= Scalability of your kit during the ownage

Memory resident

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - how

Using a vulnerability to inject syscall proxy code
(here a findsock IDT patched one)

Priviledge escalation if needed
Remotely patching the kernel -> sp _ptrace() init
One byte kernel patching (2.4.x and 2.6.x)

Using mmap technique and then inject the kit
INto Init

Patch the kernel again to put everything back
Into place

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - parasite

= Mix between inline assembly and C code
= Independent of the compilation platform

— Manual syscall trap code

— Lot of manual defines _ _ _

— All made to have a parasite binary which fit
Into the target architecture / OS

= Integrate a syscall proxy server

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - parasite

= Executed for the first time by the injected mmap
signal()/alarm() shellcode

= Loop in non blocking read() during 5sec
expecting the “magic” ICMP packet to wake up

= If it receives the packet -> fork() and connects
back to the source using as port the ICMP
sequence number.

= signal()/alarm() code waking every 60 seconds

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - client

= Send “magic” ICMP Backets while waiting for the
parasite to connect

= Once connected it provides a local syscall proxy
access and waits for your tools

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying
Local tools for remote fun
Uwinitfucker - demo

= Do we have time for ademo ?:p

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= [ntroduction to syscall proxying techniques

= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib
= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying —Future & Conclusion

Investigate the legitimate server side
“*Good” or “bad” worms

OS development

What can we invent ? Be creative!

Uberidall

BxDCE26572 BxS57616C6C

AGENDA

= Definition of a syscall and OS cases

= [ntroduction to syscall proxying techniques
= Using syscall proxying in different applications
= Case of exploit writing —shellcodes

= Writing tools locally for remote fun — Uwsplib
= Playing further - UWinitfucker

= Future & Conclusion

= Q&A

Uberidall

BxDCE26572 BxS57616C6C

Syscall Proxying — Q&A

1 B "

REN AT L)

E’ b i‘i !I;II)(!ﬁJEE; BxS?ﬁ_‘L&]C-ﬁC]-
u

Thank you for your
attention

see you at the bar :)

