
csk 'a t ' uberw all 'dot ' org

Syscall Proxying fun
and applicat ions

SPEAKER

INTRODUCTION

 csk from uberwall security
 Security auditor and researcher for

Dreamlab Technologies AG
 Specialized in telco audit ing but

somet imes...

AGENDA

 Definit ion of syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying - Int roduct ion

Definit ion of a syscall and OS cases

 2002 – Maxim iliano Caceres (CORE SDI)
 Providing a direct interface into a target OS
 Used in automated pentest tools
 Used as “ super” IPC in QNX

Syscall Proxying - Definit ion

 Definit ion of a syscall
– Kernel t rap calls used by userland programs

to access wonderland (kernel) funct ions

 OS cases
– All unices use syscalls
– Win32 or IOS use non t ransparent syscalls.

Syscall proxying is st ill possible but not in the
same way, more like shellcodes for win32

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying - Basics

 Preparing locally your code
 Execut ing remotely syscalls
 Gett ing the result back
 Interpretat ion

Syscall Proxying - Interests

 Memory resident
 Real remote kernel interface
 Everything is possible!

Syscall Proxying - Uninterest ing

 The only syscall which we can't deal with : fork()
 Can't be used as is with non syscall t ransparent

OS like win32 plateforms or Cisco IOS

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different

applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying - Applicat ions

 Legit imate syscall proxy servers
 Remote patching for m inor upgrades
 Remote debugging
 Transparent remote IPC
 Etc... be creat ive

Syscall Proxying - Applicat ions

 Ilegit imate syscall proxy servers
 Evolved exploits
 Evolved backdoors & rootkits
 Attack frameworks use syscall proxy agents
 worms

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying - Exploits

 Why it can be useful for exploit writers
 Mult i-stage exploits
 Exploit scalability / modularity
 Priviledge escalat ion, exploitat ion at the same

t ime ?
 at tacking, covering, backdooring at the same

t ime ?
 Used as t ransparent hop(e) stat ion during the

at tack / discovery process

Syscall Proxying Shellcode principles

 Locally preparing stack
 Packing and sending it to shellcode
 Remote execut ion
 The shellcode sends the resultant stack
 Local interpretat ion
 Loop
 Syscall proxy shellcodes are universal!

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 W rit ing tools locally for remot e fun –

Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying
Locals tools for remote fun - UW splib

 What was needed to make the work easier ?
 Shellcodes
 Writ ing tools locally to be used remotely
 Easy to use API for these tools

 What we did
 UWsplib: ult ra light libc for syscall proxy

usage

Syscall Proxying
Local tools for remote fun - UW splib

 Init ializat ion
 sp_init (linux_x86);

 Get stack base addr and IDT
 Using normal standard funct ions

 sp_open()
 sp_read()
 sp_exit ()
 sp_ptrace()
 Etc...

Syscall Proxying
Locals tools for remote fun - shell

 Accessing a shell like an interpreter without
using the target ones (monitored etc... ?)

 Impliment ing special funct ions like import ing
and export ing files direct ly

 Always with the same things in m ind: least
possible resident code on the owned host

 Test code: UW_sp_minishell2

Syscall Proxying
Local tools for remote fun
Remote network applicat ions

 Writ ing all your network tools to be
executed remotely by the owned host

 Make at tacks difficult to t race
 Using the t rusted host relat ionship to

access protected areas (hop stat ions)
 Test code: UW_sp_simplescan

Syscall Proxying
Localstools for remote fun
Remote process infect ion

 Exploit ing a vulnerability to:
 Remotely inject ing a parasite into a process
 Remotely backdooring a process

 Can be useful for:
 Worm writ ing
 Stealth backdoors like a patched sshd process

Syscall Proxying
Local tools for remote fun
Remote process infect ion

 1st technique: .text infect ion
 Inject ing code into .text sect ion
 Hijacking GOT to redirect read() for

example to execute our parasite and
return the real read()

 Work only with dynamically linked binary
 Don't change the size of the process in

memory
 You are lim ited by the .text size
 Test code: UW_sp_injectprocess

Syscall Proxying
Local tools for remote fun
Remote process infect ion

 2nd technique: two stage inject ion with mmap
code
 Inject mmap shellcode into process
 Execute it and return created memory zone
 Inject parasite into this zone
 Wake up the code with signal()/alarm() code

 Work with stat ically linked binary (init ?)
 Modify process size in memory
 You are not lim ited by the parasite size
 Test code: UW_sp_mmapinject

Syscall Proxying
Local tools for remote fun
I'm just too lazy somet imes

 Rewrit ing all my tools... NO WAY... i'm lazy
 How can I use my old tools: LDPRELOAD
 Just a syscall wrapper to use with “ normal” tools
 St ill in development but already usable
 Test code: UWskyzoexec

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UW init fucker
 Future & Conclusion
 Q&A

Syscall Proxying
Local tools for remote fun
Remote Kernel patching

 Exploit ing a vulnerability
 Priviledge escalat ion if needed
 Patching the kernel remotely using well

known IDT t ricks and others for on the fly
kernel patching througth /dev/kmem with
sp_lseek(), sp_read(), sp_write() funct ions.

Syscall Proxying
Local tools for remote fun
Uwinit fucker - concept

 Using a vulnerability to direct ly rootkit the
remote host during the exploitat ion process

 Modularity because all the code is on the client
side e.g the at tacker host

 Least code possible on the owned side
 For ant iforensic purposes
 Scalability of your kit during the ownage

 Memory resident

Syscall Proxying
Local tools for remote fun
Uwinit fucker - how

 Using a vulnerability to inject syscall proxy code
(here a findsock IDT patched one)

 Priviledge escalat ion if needed
 Remotely patching the kernel -> sp_ptrace() init
 One byte kernel patching (2.4.x and 2.6.x)
 Using mmap technique and then inject the kit

into init
 Patch the kernel again to put everything back

into place

Syscall Proxying
Local tools for remote fun
Uwinit fucker - parasite

 Mix between inline assembly and C code
 Independent of the compilat ion plat form

– Manual syscall t rap code
– Lot of manual defines
– All made to have a parasite binary which fit

into the target architecture / OS

 Integrate a syscall proxy server

Syscall Proxying
Local tools for remote fun
Uwinit fucker - parasite

 Executed for the first t ime by the injected mmap
signal()/alarm() shellcode

 Loop in non blocking read() during 5sec
expect ing the “ magic” ICMP packet to wake up

 If it receives the packet -> fork() and connects
back to the source using as port the ICMP
sequence number.

 signal()/alarm() code waking every 60 seconds

Syscall Proxying
Local tools for remote fun
Uwinit fucker - client

 Send “ magic” ICMP packets while wait ing for the
parasite to connect back.

 Once connected it provides a local syscall proxy
access and waits for your tools

Syscall Proxying
Local tools for remote fun
Uwinit fucker - demo

 Do we have t ime for a demo ? :p

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q&A

Syscall Proxying – Future & Conclusion

 Invest igate the legit imate server side
 “ Good” or “ bad” worms
 OS development
 What can we invent ? Be creat ive!

AGENDA

 Definit ion of a syscall and OS cases
 Int roduct ion to syscall proxying techniques
 Using syscall proxying in different applicat ions
 Case of exploit writ ing – shellcodes
 Writ ing tools locally for remote fun – Uwsplib
 Playing further - UWinit fucker
 Future & Conclusion
 Q& A

Syscall Proxying – Q&A

?

Thank you for your
at tent ion

see you at the bar :)

